Globin-chain specificity of oxidation-induced changes in red blood cell membrane properties.
نویسندگان
چکیده
We have previously shown that excess unpaired alpha- and beta-globin chains in severe alpha- and beta-thalassemia interacting with the membrane skeleton induce different changes in membrane properties of red blood cells (RBCs) in these two phenotypes. We suggest that these differences in membrane material behavior may reflect the specificity of the membrane damage induced by alpha- and beta-globin chains. To further explore this hypothesis, we sought in vitro models that induce similar membrane alterations in normal RBCs. We found that treatment of normal RBCs with phenylhydrazine produced rigid and mechanically unstable membranes in conjunction with selective association of oxidized alpha-globin chains with the membrane skeleton, features characteristic of RBCs in severe beta-thalassemia. Methylhydrazine, in contrast, induced selective association of oxidized beta-globin chains with the membrane skeleton and produced rigid but hyperstable membranes, features that mimicked those of RBCs in severe alpha-thalassemia. These findings suggest that consequences of oxidation induced by globin chains are quite specific in that those agents that cause alpha-globin chain accumulation at the membrane produce rigid but mechanically unstable membranes, whereas membrane accumulation of beta-globin chains results in rigid but mechanically stable membranes. These in vitro experiments lend further support to the hypothesis that membrane-associated alpha- and beta-chains induce oxidative damage to highly specific different skeletal components and that the specificity of this skeletal damage accounts for the differences in material membrane properties of these oxidatively attacked RBCs and perhaps of alpha- and beta-thalassemic RBCs as well.
منابع مشابه
Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia.
In severe human beta-thalassemia, the pathophysiology relates to accumulation of excess alpha-globin chains at the membrane. One hypothesis is that membrane-associated alpha-globin by virtue of it's iron or hemichromes produces oxidation of adjacent membrane proteins. The availability of a mouse model of severe beta-thalassemia, as well as a transgenic (thalassemic-sickle) mouse that expresses ...
متن کاملImbalanced globin chain synthesis determines erythroid cell pathology in thalassemic mice.
BACKGROUND beta-thalassemia occurs from the imbalanced globin chain synthesis due to the absence or inadequate beta-globin chain production. The excessive unbound alpha-globin chains precipitate in erythroid precursors and mature red blood cells leading to ineffective erythropoiesis and hemolysis. DESIGN AND METHODS In vitro globin chain synthesis in reticulocytes from different types of thal...
متن کاملRed cell membrane protein abnormalities as defined by sds-page among patients with anaemia in a west african region hospital practice
Background: Erythrocytes require an ability to deform and to withstand shear stress while negotiating the microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic haemolysis. Methods: This was a cross sectional study aimed at determining the prevalenc...
متن کاملThe unusual pathobiology of hemoglobin constant spring red blood cells.
Hemoglobin Constant Spring (HbCS) is the most common nondeletional alpha-thalassemic mutation and is an important cause of HbH-like disease in Southeast Asia. HbCS variants have an almost normal mean cell volume (MCV) and the anemia is more severe when compared with other alpha-thalassemic variants. We explored the pathobiology of HbCS red blood cells (RBCs) because the underlying cause(s) of t...
متن کاملSingle-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress
Erythroid cells, specifically red blood cells (RBCs), are constantly exposed to highly reactive radicals during cellular gaseous exchange. Such exposure often exceeds the cells' innate anti-oxidant defense systems, leading to progressive damage and eventual senescence. One of the contributing factors to this process are alterations to hemoglobin conformation and globin binding to red cell cytos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 79 6 شماره
صفحات -
تاریخ انتشار 1992